Toggle Offcanvas
...
Global Government Tenders

Most trusted source for Tendering Opportunities and Business Intelligence since 2002

Provide Professional Services To Develop And Lead The Implementation Of Machine Learning Models And Data Analysis For Leak Detection And Water Consumption Prediction

UNIVERSIDAD NACIONAL DE COLOMBIA Colombia has Released a tender for Provide Professional Services To Develop And Lead The Implementation Of Machine Learning Models And Data Analysis For Leak Detection And Water Consumption Prediction in Human Resources. The tender was released on Oct 10, 2025.

Country - Colombia

Summary - Provide Professional Services To Develop And Lead The Implementation Of Machine Learning Models And Data Analysis For Leak Detection And Water Consumption Prediction

Deadline - Oct 24, 2025

GT reference number - 119866905

Product classification - Personnel and payroll services

Organization Details:

  Address - Colombia

  Contact details - 565656565

  Tender notice no. - 76454545

  GT Ref Id - 119866905

  Document Type - Tender Notices

Notice Details and Documents:

Description - Description: Provide professional services to develop and lead the implementation of machine learning models and data analysis for leak detection and water consumption prediction within the framework of the Hidrona project.local title:: Prestar servi cios profesionales para desarrollar y liderar la implementación de modelos de machine learning y análisis de datos para la detección de fugas y la predicción de consumo de aguaContract Duration: : 76Díaslocal description: : Prestar servicios profesionales para desarrollar y liderar la implementación de modelos de machine learning y análisis de datos para la detección de fugas y la predicción de consumo de agua en el marco del proyecto Hi

Gt Ref Id - 119866905

Deadline - Oct 24, 2025

Share share

Similar Tenders :

Summary:
Create Account

Why Us

3,00,000 +

Users

190 +

Countries Covered

5,00,000 +

Agencies Tracked

50,000 +

Notices Daily

90 Million +

Database